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Approach to Field-Induced Stationary State in a 
Gas of Hard Rods 
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The Boltzmann equation describing one-dimensional motion of a charged hard 
rod in a neutral hard rod gas at temperature T = 0 is solved. Under the action of 
a constant and uniform field the charged particle attains a stationary state. In 
the long time limit the velocity autocorrelation function decays via damped 
oscillations. In the reference system moving with the mean particle velocity the 
decay of fluctuations in the position space is governed (in the hydrodynamic 
limit) by the diffusion equation. Both the stationary current and the diffusion 
coefficient are proportional to the square root of the field. It is conjectured that 
this result also holds for T > 0 in a strong field limit. 
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1. INTRODUCTION 

In his 1978 paper, (1> P. Resibois solved and analyzed the self-diffusion 
problem for a hard rod gas at the level of Boltzmann's description. The 
probability density f(r,v, t) for finding the test particle at time t with 
velocity v and position r satisfies then the linear kinetic equation 

( )f(r,v,t)=p f dcrv- c[[ f(r,c,t)ep(v)- f(r,v,t)ep(c)] (1.1) 

in which pep(v) represents the stationary uniform phase space density of the 
host hard rod fluid. 
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Assuming ~(v) to be Maxwell's distribution 

( m )W2exp( mv 2 ) (1.2) 
r = ~ 2 k d T  

(m is the particle mass, T the temperature of the fluid, and k B Boltzmann's 
constant) Resibois solved the initial-value problem for Eq. (1.1). He found 
in particular the solution fs(r, v, t) corresponding to the initial condition 

f~(r, v, O) = 8(r)~pM(v) (1.3) 

where 8(r) denotes Dirac's distribution. The spatial density 

n,(r, t) = f dv f~(r, v, t) (1.4) 

represents the conditional probability density for finding the test particle at 
point r and time t, provided it was initially at the origin with equilibrium 
velocity distribution ~pM(v) (the so-called van Hove self-correlation func- 
tion). It has been proved that for long times (in the hydrodynamic limit) the 
evolution of density ns(r, t) is governed by the diffusion equation. 

One can, however, expect a qualitative change at zero temperature, 
where 

~0(v) = lim~M(V) = 8(V) (1.5) 
T ~ 0 " " 

Indeed, in this case the test particle suffers collisions with particles at rest. 
When an encounter takes place its velocity instantaneously vanishes. The 
particle gets stopped and it cannot move anymore (not true for T > 0). The 
cooling effect of the medium is so strong that it rules out the diffusive 
behavior. To see this, let us insert (1.5) into (1.1). The kinetic equation now 
reads 

+ 01vl)f(r, ,t)= pd(v)faclcif(r,c,t) (1.6) 

Any distribution of the form 

n(r)8(v)  (1.7) 

yields a stationary state. The fundamental solution of (1.6) corresponding 
to the initial condition 

f ( r , v ,O)  = 8 ( r -  ro)8(v - Vo), Vov~O (1.8) 

has the form 

f ( r, v, t [ r o, Vo) = 8 ( v - Vo)8 ( r - r o - vot)exp( - plVo] t) 

+ O0[vo(r - ro)]O(Ivolt - I r  - ro])exp(-p]r - ro[)8(v) 

(1.9) 
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where 0 is the Heaviside step function 

1, x > 0 
O(x)  = 0, x < 0 (1.10) 

Hence, in the limit t ---> ~ ,  the spatial density gets frozen in the shape 

n(r,  ~ I r0,v0) = O0[vo(r - r0)]exp(-pl r  - r0l ) (1.11) 

A uniform distribution cannot be attained. The diffusion process disap- 
pears. 

The main problem which we want to discuss in this paper is what 
happens when the test particle has a charge which couples to a constant 
and uniform external field. Brief comments on the effect of the field at 
finite temperature T can be found in the rigorous study of self-diffusion in 
a hard rod fluid by Lebowitz and Percus. (2) The discussion is, however, 
restricted there to the linear response term. Here we solve exactly the 
Boltzmann equation 

( ~ +v~ +a ~-~ + olvl)f(r,v,t)=oS(v) f dclclf(r,c,t) (1.12) 

describing the propagation of the test particle through zero temperature 
fluid under the action of the field giving rise to a constant acceleration a 
(term a3/Ov).  

One can ask the following physically relevant questions: (i) Will the 
system be driven to a stationary state? It has been established that for the 
Lorentz model in which the charged particle ("electron") conserves its 
energy at collisions with infinitely heavy scatterers ("ions") no stationary 
state (in an infinite space) is possible. O) The situation considered here is 
quite different, as the scatterers are mechanically identical to the charged 
test particle. (ii) What is the dynamics of the fluctuations around the 
stationary state? Will the diffusive mode be restored by the field? (iii) Can 
one apply to Eq. (1.12) the linear response theory? Answers to these 
questions are given in the following two sections. The paper ends with some 
comments on what one can learn from the results obtained here about the 
behavior of the system at finite temperature. 

2. S T A T I O N A R Y  STATE 

The stochastic motion of the test particle corresponding to Eq. (1.12) 
consists of periods of time in which it moves with a constant acceleration 
and of collisions which instantaneously break the motion and stop the 
particle. Then the field makes it move again, and so on. It is thus clear that 
in a stationary state only velocities in the direction of the field can be 
observed. Consequently, assuming that a > 0, we look for the stationary 
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velocity distribution in the form 

C'(v) = O(v) g(v) (2.1) 

Inserting (2.1) into (1.12) one finds 

|163176176 (2.2) 

The general solution of (2.2): g (v )=  constexp(-pv2/2a) leads to the 
normalized stationary distribution 

2p ~l/2ex [ pv 2 

Distribution r is one-half of Maxwell's distribution with "temperature" 
proportional to the acceleration a and inversely proportional to the density 
p. The charged particle moves under the action of the field with mean 
velocity 

( 2 a )  '/2 
u= -~0 (2.4) 

and mean kinetic energy (ma/p). The result (2.4) indicates that the linear 
response theory cannot be applied to Eq. (1.12) (we come back to this point 
in the last section). 

In order to investigate how the system is actually driven to the 
stationary state, one has to solve the initial value problem for Eq. (1.12). 
Clearly, the solution must have the form 

f(r, v, t) = exp( - - -  

and satisfy the condition 

pvlvl ( v -  v2 -ar) 
2a ){ O(v)X+ at,-~ 

- -  192 -- ar )  } + ~( - v)x- (v at, -~ (2.5) 

lim f(r ,v, t)-  lira f(r,v,t) 
v-+O + v---Y0- 

-'of =X+(-at , -ar)  - X - ( - a t , - a r )  = a dclc[f(r,c,t) (2.6) 

Equation (2.6) implies that for v < 0 

_ _ _  ~ _ _  I)2 _ ar) V2 ar) X+(V at, X (v--at , - f  T 

; ( - a lp de Ic l f  r - -2-aa'C' t - a 
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Inserting (2.7) into (2.5) and putting t = 0 one finds 

X+(V,@-ar )=exp( -~aVlV i ) f ( r , v ,O)  

+a-loO(-v) f clclc[f(r- V2 _ _  

~ ~, v)~.~ 
(2.5), (2.7), and (2.8) one arrives at an integral 

where 

Ix(t) = u - l J ~ v  tvlw(v, t) (2.1 
i "  

1) 

and ~(v, t) is the velocity distribution. The second term in the right-hand 
side of Eq. (2.10) has the convolution structure. ~t(t) can thus be calculated 
in a straightforward way by using the Laplace transform method. Knowing 
t~(t) one knows ~(v, t) as integrating Eq. (2.9) over r yields the relation 

,~(v, t)= exp{- ~a [vlvi- (v - a t ) I v  - a t l ] ) w ( v  - at, O) 

+ ep~t(v)IO(at - v) Ix(t - Va ) (2.12) 

From (2.10) one finds 

= r  dz exp(z t -  z2/20a) 
Ix(t) ) 

• ep(v,0)J (2.13) 

Combining now Eq. 
equation 

. . . . .  ate - at, O) s~,.,~,,~ exp( ~ Evlvl (v a'~lv-.,ll)j(r v, + T ' v  

+, - '~" ' (v )O(a t -  v)fdc IclS(,'- v~ 
where ~St(v) and u are given by Eq. (2.3) and (2.4), respectively. The 
normalization condition has the form 

fdvexp{ - ~ [(v + at)Iv + at I - v i v i ]  }qo(v,0) 

2' + a ~ r  ~) = 1 (2.~0) 
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where 

erfcz -- 2~r- 1 / 2 f ~ d t  e x p ( -  t2) (2.14) 

and the integral over the complex variable z represents the inverse Laplace 
transformation. 

The complementary error function erfc z is an entire function with no 
zeros in the half-plane Re z > - 1 .  Its first zeros (closest to the origin) 
z o = x o + iy o have coordinates (4) 

x 0 ~  - 1.35, Y0----- 1.99 (2.15) 

Hence, when t ~ m only the pole at z = 0 contributes to the right-hand side 
of (2.13), and we find 

lim /z( t )= 1 (2.16) 
l---> ~ 

This means that Eq. (2.12) does describe the approach to the stationary 
state (2.3). In the next section we discuss in more detail this point by 
studying the temporal behavior of fluctuations. 

3. DYNAMICS OF FLUCTUATIONS 

Fluctuations of the velocity of the charged particle around its mean 
value u [see Eq. (2.4)] are described by the velocity autocorrelation function 

r(0  = ( v ( t ) v ) s t -  u 2 

Here, ( )st denotes the average value, with respect to the stationary 
distribution (2.3). Using formulas (2.12) and (2.13) with the initial condition 
q0(v, 0) = v~St(v) one readily finds the Laplace transform of F(t) 

F(z) = fo~  dt exp( - zt)F(t)  (3.1) 

erfc[ z(2oa) - ' /2]  

F(z) has no singularity at z = 0. We find 

lira r(z) = ( ) o (3.3) 
z--->0 

The approach to zero of F(t) in the long time limit is determined by the 
poles of F(z) at z o = Xo+_ iy o [see Eq. (2.15)]. For t---> ee the velocity 
autocorrelation function vanishes via exponentially damped oscillations 
with relaxation time To= Xol(2oa) -1/2, and the period of oscillations 
To = lYol- l(20a)-1/2. 
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We shall show now that Eq. (3.3) defines the diffusion coefficient 
which appears in the asymptotic (hydrodynamic) evolution of fluctuations 
in the position space. 

To this end, let us suppose that the charged particle is initially at the 
origin with the velocity distribution cpSt(v). In order to calculate the proba- 
bility density ns(r,t ) for finding it at time t at point r (van Hove's 
self-correlation function in a stationary state) one has to solve the integral 
equation (2.9) with the initial condition 

fs(t, v, 0) = 8(r)q~St(v) (3.4) 

Inserting (3.4) into (2.9) and applying to the resulting equation the Fourier 
and Laplace transformations we find 

(So [ at ] fs(k,v,z) = V/~dtexp - ( z  + ikv)t + ,~--~- 

where 

~(k ,v , z )= f drexp(-ikr) fo~dtexp(-zt) f(r ,v , t  ) (3.6) 

A 

Equation (3.5) can be readily solved for f~(k, v,z). Integrating then over v 
one obtains the following result: 

n;(k,z) = ~o(k,z) + (O + ik)a(z,k) [ ~z ] ik + Oza(z,k) Out~(z,k) + ika ~o(k,z) (3.7) 

where ~0(k, z) is the Fourier-Laplace transform of the function 

no(r,t) = O ( v -  at)6 r -  vt + --f- st 

and 

~ ( z , k ) =  2a(o-+ ik) ] exp[ 2a (o+  ik) erfc [2a(o+ik)li/2 

(3.9) 

The term no(r, t) vanishes rapidly and plays no role in the long-time limit. 
The long time behavior of the spatial density n~(r, t) is determined by the 
solutions of the dispersion relation 

ik + pze~(z,k) = 0 (3.10) 

[see Eq. (3.7)]. ct(z, k) is an entire function of the complex variable z. When 
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z ~ 0, we can use its asymptotic representation 

a(z 'k )z~o[  2a(S+ ik) ]1/2 a(o +z ik) (3.11) 

Inserting (3.11) into (3.10) and solving for z one finds 

z(k)  = - iuk - Dk 2 + o(k  2) (3.12) 

where 

4 -  ~r u = foo~dtr(t) (3.13) 

[see Eq. (3.3)1. 
z(k) has the structure corresponding formally to the hydrodynamic 

sound mode frequency. The role of "sound velocity" is played here by u, 
whereas the damping coefficient D is determined by the time integral of the 
velocity autocorrelation function. The field restores thus the hydrodynamic 
behavior. In the long time limit and at large distances the charged particle, 
localized initially at r = 0, propagates in the direction imposed by the field 
according to the law 

ns(r't) t~o~= f dk f dz exp(zt) 

r - -  u t ~ t  I /2  
L \ / J  

- [ 4~rDt ] -1/2exp [ 
( r -  ut) 2 ] 

(3.14) 

In the reference system moving with velocity u we observe the simple 
diffusion process. The initial delta-fluctuation at r = 0 decays away at large 
distances [see Eq. (3.14)] only as t-1/2. 

4. D ISCUSSION 

The hydrodynamic frequency (3.12) is a pure effect of the external 
field. Both the mean velocity u and the diffusion coefficient D are propor- 
tional to a 1/2, and vanish for a = 0. The nonanalyticity at a = 0 shows that 
the linear response theory cannot be applied to the kinetic equation (1.12). 
This fact was to be expected. Indeed, at finite temperature T the medium 
provides a characteristic energy (kgT) corresponding to the thermal mo- 
tion. One can then give a meaning to the weak field limit by requiring that 
the energy absorbed by the charged particle on a mean free path is much 
smaller than its thermal energy 

map -1 << kBT (4.1) 

It is in region (4.1) that the linear response approach should give valuable 
information. For T =  0 inequality (4.1) cannot be satisfied. The thermal 
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energy scale disappears and in a sense the field becomes infinitely strong at 
any value of a. 

It seems thus reasonable to conjecture that for a system at temperature 
T > 0 our results describe correctly the properties of the stationary state 
and the dynamics of fluctuations for very strong fields: m a p -  1 >> k~ To The 
fact that the current becomes then proportional to a I/2 may even remain 
true in three dimensions. Indeed, putting T = 0 we shall be left again (as in 
one dimension) with only one physical parameter involving time, the 
acceleration a. The mean velocity in the stationary state (if there is any) 
must be proportional to a 1/2 for dimensional reasons. 

Let us finally stress that the presence of a stationary current introduces 
a qualitative change in the hydrodynamic mode of motion. At zero field 
and T > 0 a purely diffusive law is found (1'2) whereas the hydrodynamic 
frequency (3.12) contains the imaginary part ( -  iuk) ,  reflecting the uniform 
propagation of the density fluctuation with mean velocity u. It should be 
expected that this important modification persists also for T > 0. 
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